Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On Integer Chebyshev Polynomials

Laurent Habsieger and Bruno Salvy
Mathematics of Computation
Vol. 66, No. 218 (Apr., 1997), pp. 763-770
Stable URL: http://www.jstor.org/stable/2153893
Page Count: 8
  • Read Online (Free)
  • Download ($34.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On Integer Chebyshev Polynomials
Preview not available

Abstract

We are concerned with the problem of minimizing the supremum norm on [ 0, 1 ] of a nonzero polynomial of degree at most n with integer coefficients. We use the structure of such polynomials to derive an efficient algorithm for computing them. We give a table of these polynomials for degree up to 75 and use a value from this table to answer an open problem due to P. Borwein and T. Erdélyi and improve a lower bound due to Flammang et al.

Page Thumbnails

  • Thumbnail: Page 
763
    763
  • Thumbnail: Page 
764
    764
  • Thumbnail: Page 
765
    765
  • Thumbnail: Page 
766
    766
  • Thumbnail: Page 
767
    767
  • Thumbnail: Page 
768
    768
  • Thumbnail: Page 
769
    769
  • Thumbnail: Page 
770
    770