Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Multi-Bump Orbits Homoclinic to Resonance Bands

Tasso J. Kaper and Gregor Kovačič
Transactions of the American Mathematical Society
Vol. 348, No. 10 (Oct., 1996), pp. 3835-3887
Stable URL: http://www.jstor.org/stable/2155322
Page Count: 53
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Multi-Bump Orbits Homoclinic to Resonance Bands
Preview not available

Abstract

We establish the existence of several classes of multi-bump orbits homoclinic to resonance bands for completely-integrable Hamiltonian systems subject to small-amplitude Hamiltonian or dissipative perturbations. Each bump is a fast excursion away from the resonance band, and the bumps are interspersed with slow segments near the resonance band. The homoclinic orbits, which include multi-bump Šilnikov orbits, connect equilibria and periodic orbits in the resonance band. The main tools we use in the existence proofs are the exchange lemma with exponentially small error and the existence theory of orbits homoclinic to resonance bands which make only one fast excursion away from the resonance bands.

Page Thumbnails

  • Thumbnail: Page 
3835
    3835
  • Thumbnail: Page 
3836
    3836
  • Thumbnail: Page 
3837
    3837
  • Thumbnail: Page 
3838
    3838
  • Thumbnail: Page 
3839
    3839
  • Thumbnail: Page 
3840
    3840
  • Thumbnail: Page 
3841
    3841
  • Thumbnail: Page 
3842
    3842
  • Thumbnail: Page 
3843
    3843
  • Thumbnail: Page 
3844
    3844
  • Thumbnail: Page 
3845
    3845
  • Thumbnail: Page 
3846
    3846
  • Thumbnail: Page 
3847
    3847
  • Thumbnail: Page 
3848
    3848
  • Thumbnail: Page 
3849
    3849
  • Thumbnail: Page 
3850
    3850
  • Thumbnail: Page 
3851
    3851
  • Thumbnail: Page 
3852
    3852
  • Thumbnail: Page 
3853
    3853
  • Thumbnail: Page 
3854
    3854
  • Thumbnail: Page 
3855
    3855
  • Thumbnail: Page 
3856
    3856
  • Thumbnail: Page 
3857
    3857
  • Thumbnail: Page 
3858
    3858
  • Thumbnail: Page 
3859
    3859
  • Thumbnail: Page 
3860
    3860
  • Thumbnail: Page 
3861
    3861
  • Thumbnail: Page 
3862
    3862
  • Thumbnail: Page 
3863
    3863
  • Thumbnail: Page 
3864
    3864
  • Thumbnail: Page 
3865
    3865
  • Thumbnail: Page 
3866
    3866
  • Thumbnail: Page 
3867
    3867
  • Thumbnail: Page 
3868
    3868
  • Thumbnail: Page 
3869
    3869
  • Thumbnail: Page 
3870
    3870
  • Thumbnail: Page 
3871
    3871
  • Thumbnail: Page 
3872
    3872
  • Thumbnail: Page 
3873
    3873
  • Thumbnail: Page 
3874
    3874
  • Thumbnail: Page 
3875
    3875
  • Thumbnail: Page 
3876
    3876
  • Thumbnail: Page 
3877
    3877
  • Thumbnail: Page 
3878
    3878
  • Thumbnail: Page 
3879
    3879
  • Thumbnail: Page 
3880
    3880
  • Thumbnail: Page 
3881
    3881
  • Thumbnail: Page 
3882
    3882
  • Thumbnail: Page 
3883
    3883
  • Thumbnail: Page 
3884
    3884
  • Thumbnail: Page 
3885
    3885
  • Thumbnail: Page 
3886
    3886
  • Thumbnail: Page 
3887
    3887