Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Local Dimensions of the Bernoulli Convolution Associated with the Golden Number

Tian-You Hu
Transactions of the American Mathematical Society
Vol. 349, No. 7 (Jul., 1997), pp. 2917-2940
Stable URL: http://www.jstor.org/stable/2155559
Page Count: 24
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Local Dimensions of the Bernoulli Convolution Associated with the Golden Number
Preview not available

Abstract

Let X1, X2, ... be a sequence of i.i.d. random variables each taking values of 1 and -1 with equal probability. For $1/2 < \rho < 1$ satisfying the equation 1 - ρ - ⋯ - ρs = 0, let μ be the probability measure induced by S = ∑∞ i = 1 ρiX i. For any x in the range of S, let $d(\mu, x) = \lim_{r\rightarrow 0^+} \log \mu(\lbrack x - r, x + r\rbrack)/\log r$ be the local dimension of μ at x whenever the limit exists. We prove that α* = -log 2/log ρ and α* = -log δ/s log ρ - log 2/log ρ, where $\delta = (\sqrt 5 - 1)/2$, are respectively the maximum and minimum values of the local dimensions. If s = 2, then ρ is the golden number, and the approximate numerical values are α* ≈ 1.4404 and α* ≈ 0.9404.

Page Thumbnails

  • Thumbnail: Page 
2917
    2917
  • Thumbnail: Page 
2918
    2918
  • Thumbnail: Page 
2919
    2919
  • Thumbnail: Page 
2920
    2920
  • Thumbnail: Page 
2921
    2921
  • Thumbnail: Page 
2922
    2922
  • Thumbnail: Page 
2923
    2923
  • Thumbnail: Page 
2924
    2924
  • Thumbnail: Page 
2925
    2925
  • Thumbnail: Page 
2926
    2926
  • Thumbnail: Page 
2927
    2927
  • Thumbnail: Page 
2928
    2928
  • Thumbnail: Page 
2929
    2929
  • Thumbnail: Page 
2930
    2930
  • Thumbnail: Page 
2931
    2931
  • Thumbnail: Page 
2932
    2932
  • Thumbnail: Page 
2933
    2933
  • Thumbnail: Page 
2934
    2934
  • Thumbnail: Page 
2935
    2935
  • Thumbnail: Page 
2936
    2936
  • Thumbnail: Page 
2937
    2937
  • Thumbnail: Page 
2938
    2938
  • Thumbnail: Page 
2939
    2939
  • Thumbnail: Page 
2940
    2940