Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Interpolated Boundary Conditions in the Finite Element Method

Ridgway Scott
SIAM Journal on Numerical Analysis
Vol. 12, No. 3 (Jun., 1975), pp. 404-427
Stable URL: http://www.jstor.org/stable/2156054
Page Count: 24
  • Subscribe ($19.50)
  • Cite this Item
Interpolated Boundary Conditions in the Finite Element Method
Preview not available

Abstract

This paper shows that the technique introduced in Berger, Scott and Strang [2] can achieve optimal accuracy if the approximating functions interpolate boundary conditions at the Lobatto quadrature points for each element edge on the boundary. No modification of the energy form is required. Estimates are derived in lower norms as well as in the energy norm. A numerical integration scheme is presented that yields optimal accuracy for piecewise quadratics.

Page Thumbnails

  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409
  • Thumbnail: Page 
410
    410
  • Thumbnail: Page 
411
    411
  • Thumbnail: Page 
412
    412
  • Thumbnail: Page 
413
    413
  • Thumbnail: Page 
414
    414
  • Thumbnail: Page 
415
    415
  • Thumbnail: Page 
416
    416
  • Thumbnail: Page 
417
    417
  • Thumbnail: Page 
418
    418
  • Thumbnail: Page 
419
    419
  • Thumbnail: Page 
420
    420
  • Thumbnail: Page 
421
    421
  • Thumbnail: Page 
422
    422
  • Thumbnail: Page 
423
    423
  • Thumbnail: Page 
424
    424
  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427