Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

A Spectral Method of Characteristics for Hyperbolic Problems

Endre Suli and Antony Ware
SIAM Journal on Numerical Analysis
Vol. 28, No. 2 (Apr., 1991), pp. 423-445
Stable URL: http://www.jstor.org/stable/2157822
Page Count: 23
  • Subscribe ($19.50)
  • Cite this Item
A Spectral Method of Characteristics for Hyperbolic Problems
Preview not available

Abstract

A new numerical technique is introduced for first-order hyperbolic equations, based on combining the spectral method with explicit timestepping along the characteristics, which permits the use of large timesteps at no cost in accuracy. The method is unconditionally stable and spectrally accurate. The theoretical results are illustrated by numerical experiments.

Page Thumbnails

  • Thumbnail: Page 
423
    423
  • Thumbnail: Page 
424
    424
  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434
  • Thumbnail: Page 
435
    435
  • Thumbnail: Page 
436
    436
  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439
  • Thumbnail: Page 
440
    440
  • Thumbnail: Page 
441
    441
  • Thumbnail: Page 
442
    442
  • Thumbnail: Page 
443
    443
  • Thumbnail: Page 
444
    444
  • Thumbnail: Page 
445
    445