Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Numerical Passage from Kinetic to Fluid Equations

F. Coron and B. Perthame
SIAM Journal on Numerical Analysis
Vol. 28, No. 1 (Feb., 1991), pp. 26-42
Stable URL: http://www.jstor.org/stable/2157932
Page Count: 17
  • Subscribe ($19.50)
  • Cite this Item
Numerical Passage from Kinetic to Fluid Equations
Preview not available

Abstract

A numerical way to pass from the Bhatnagar-Gross-Krook model of the Boltzmann equation to compressible Euler equations is presented. In order to do so, a stable discretization of the kinetic equation, valid for arbitrary values of the mean free path is described. This requires that the discretization preserves some physical properties: positivity, conservation of mass, momentum, energy, and entropy property. This is motivated by hypersonic computations for reentry problems.

Page Thumbnails

  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32
  • Thumbnail: Page 
33
    33
  • Thumbnail: Page 
34
    34
  • Thumbnail: Page 
35
    35
  • Thumbnail: Page 
36
    36
  • Thumbnail: Page 
37
    37
  • Thumbnail: Page 
38
    38
  • Thumbnail: Page 
39
    39
  • Thumbnail: Page 
40
    40
  • Thumbnail: Page 
41
    41
  • Thumbnail: Page 
42
    42