Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

An Algebraic Proof for the Symplectic Structure of Moduli Space

Yael Karshon
Proceedings of the American Mathematical Society
Vol. 116, No. 3 (Nov., 1992), pp. 591-605
DOI: 10.2307/2159424
Stable URL: http://www.jstor.org/stable/2159424
Page Count: 15
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
An Algebraic Proof for the Symplectic Structure of Moduli Space
Preview not available

Abstract

Goldman has constructed a symplectic form on the moduli space Hom(π, G)/G, of flat G-bundles over a Riemann surface S whose fundamental group is π. The construction is in terms of the group cohomology of π. The proof that the form is closed, though, uses de Rham cohomology of the surface S, with local coefficients. This symplectic form is shown here to be the restriction of a tensor, that is defined on the infinite product space Gπ. This point of view leads to a direct proof of the closedness of the form, within the language of group cohomology. The result applies to all finitely generated groups π whose cohomology satisfies certain conditions. Among these are the fundamental groups of compact Kähler manifolds.

Page Thumbnails

  • Thumbnail: Page 
591
    591
  • Thumbnail: Page 
592
    592
  • Thumbnail: Page 
593
    593
  • Thumbnail: Page 
594
    594
  • Thumbnail: Page 
595
    595
  • Thumbnail: Page 
596
    596
  • Thumbnail: Page 
597
    597
  • Thumbnail: Page 
598
    598
  • Thumbnail: Page 
599
    599
  • Thumbnail: Page 
600
    600
  • Thumbnail: Page 
601
    601
  • Thumbnail: Page 
602
    602
  • Thumbnail: Page 
603
    603
  • Thumbnail: Page 
604
    604
  • Thumbnail: Page 
605
    605