Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Distribution of the Range

E. J. Gumbel
The Annals of Mathematical Statistics
Vol. 18, No. 3 (Sep., 1947), pp. 384-412
Stable URL: http://www.jstor.org/stable/2235736
Page Count: 29
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Distribution of the Range
Preview not available

Abstract

The asymptotic distribution of the range w for a large sample taken from an initial unlimited distribution possessing all moments is obtained by the convolution of the asymptotic distribution of the two extremes. Let α and u be the parameters of the distribution of the extremes for a symmetrical variate, and let R = α(w - 2u) be the reduced range. Then its asymptotic probability Ψ(R) and its asymptotic distribution ψ(R) may be expressed by the Hankel function of order one and zero. A table is given in the text. The asymptotic distribution g(w) of the range proper is obtained from ψ(R) by the usual linear transformation. The initial distribution and the sample size influence the position and the shape of the distribution of the range in the same way as they influence the distribution of the largest value. If we take the parameters from the calculated means and standard deviations, the asymptotic distribution of the range gives a good fit to the calculated distributions for normal samples from size 6 onward. Consequently the distribution of the range for normal samples of any size larger than 6 may be obtained from the asymptotic distribution of the reduced range. The asymptotic probabilities and the asymptotic distributions of the mth range and of the range for asymmetrical distributions are obtained by the same method and lead to integrals which may be evaluated by numerical methods.

Page Thumbnails

  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389
  • Thumbnail: Page 
390
    390
  • Thumbnail: Page 
391
    391
  • Thumbnail: Page 
392
    392
  • Thumbnail: Page 
393
    393
  • Thumbnail: Page 
394
    394
  • Thumbnail: Page 
395
    395
  • Thumbnail: Page 
396
    396
  • Thumbnail: Page 
397
    397
  • Thumbnail: Page 
398
    398
  • Thumbnail: Page 
399
    399
  • Thumbnail: Page 
400
    400
  • Thumbnail: Page 
401
    401
  • Thumbnail: Page 
402
    402
  • Thumbnail: Page 
403
    403
  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409
  • Thumbnail: Page 
410
    410
  • Thumbnail: Page 
411
    411
  • Thumbnail: Page 
412
    412