Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Distribution of a Root of a Determinantal Equation

D. N. Nanda
The Annals of Mathematical Statistics
Vol. 19, No. 1 (Mar., 1948), pp. 47-57
Stable URL: http://www.jstor.org/stable/2236055
Page Count: 11
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Distribution of a Root of a Determinantal Equation
Preview not available

Abstract

S. N. Roy [2] obtained in 1943 the distribution of the maximum, minimum and any intermediate one of the roots of certain determinantal equations based on covariance matrices of two samples on the null hypothesis of equal covariance matrices in the two populations. The present paper gives a different method of working out the distribution of any of these roots under the same hypothesis. The distribution of the largest, smallest and any intermediate root when the roots are specified by their position in a monotonic arrangement has been derived for p = 2, 3, 4, and 5 by the new method. The method is applicable for obtaining the distribution of the roots of an equation of any order, when the distributions of the roots of lower order equations have been worked out.

Page Thumbnails

  • Thumbnail: Page 
47
    47
  • Thumbnail: Page 
48
    48
  • Thumbnail: Page 
49
    49
  • Thumbnail: Page 
50
    50
  • Thumbnail: Page 
51
    51
  • Thumbnail: Page 
52
    52
  • Thumbnail: Page 
53
    53
  • Thumbnail: Page 
54
    54
  • Thumbnail: Page 
55
    55
  • Thumbnail: Page 
56
    56
  • Thumbnail: Page 
57
    57