If you need an accessible version of this item please contact JSTOR User Support

On the Characteristics of the General Queueing Process, with Applications to Random Walk

J. Kiefer and J. Wolfowitz
The Annals of Mathematical Statistics
Vol. 27, No. 1 (Mar., 1956), pp. 147-161
Stable URL: http://www.jstor.org/stable/2236981
Page Count: 15
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
On the Characteristics of the General Queueing Process, with Applications to Random Walk
Preview not available

Abstract

The authors continue the study (initiated in [1]) of the general queueing process (arbitrary distributions of service time and time between successive arrivals, many servers) for the case $(\rho < 1)$ where a limiting distribution exists. They discuss convergence with probability one of the mean waiting time, mean queue length, mean busy period, etc. Necessary and sufficient conditions for the finiteness of various moments are given. These results have consequences for the theory of random walk, some of which are pointed out. This paper is self-contained and may be read independently of [1]; the necessary results of [1] are quoted. No previous knowledge of the theory of queues is required for reading either [1] or the present paper.

Page Thumbnails

  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161