Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Sampling with Unequal Probabilities and without Replacement

H. O. Hartley and J. N. K. Rao
The Annals of Mathematical Statistics
Vol. 33, No. 2 (Jun., 1962), pp. 350-374
Stable URL: http://www.jstor.org/stable/2237517
Page Count: 25
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Sampling with Unequal Probabilities and without Replacement
Preview not available

Abstract

Given a population of N units, it is required to draw a random sample of n distinct units in such a way that the probability for the ith unit to be in the sample is proportional to its "size" xi (sampling with p.p.s. without replacement). From a number of alternatives of achieving this, one well known procedure is here selected: The N units in the population are listed in a random order and their xi are cumulated and a systematic selection of n elements from a "random start" is then made on the cumulation. The mathematical theory associated with this procedure, not available in the literature to date, is here provided: With the help of an asymptotic theory, compact expressions for the variance of the estimate of the population total are derived together with variance estimates. These formulas are applicable for moderate values of N. The reduction in variance, as compared to sampling with p.p.s. with replacement, is clearly demonstrated.

Page Thumbnails

  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356
  • Thumbnail: Page 
357
    357
  • Thumbnail: Page 
358
    358
  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362
  • Thumbnail: Page 
363
    363
  • Thumbnail: Page 
364
    364
  • Thumbnail: Page 
365
    365
  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
368
    368
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374