Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Epsilon Entropy and Data Compression

Edward C. Posner and Eugene R. Rodemich
The Annals of Mathematical Statistics
Vol. 42, No. 6 (Dec., 1971), pp. 2079-2125
Stable URL: http://www.jstor.org/stable/2240137
Page Count: 47
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Epsilon Entropy and Data Compression
Preview not available

Abstract

This article studies efficient data transmission, or "data compression", from the standpoint of the theory of epsilon entropy. The notion of the entropy of a "data source" is defined. This quantity gives a precise measure of the amount of channel capacity necessary to describe a data source to within a given fidelity, epsilon, with probability one, when each separate "experiment" must be transmitted without storage from experiment to experiment. We also define the absolute epsilon entropy of a source, which is the amount of capacity needed when storage of experiments is allowed before transmission. The absolute epsilon entropy is shown to be equal to Shannon's rate distortion function evaluated for zero distortion, when suitable identifications are made. The main result is that the absolute epsilon entropy and the epsilon entropy have ratio close to one if either is large. Thus, very little can be saved by storing the results of independent experiments before transmission.

Page Thumbnails

  • Thumbnail: Page 
2079
    2079
  • Thumbnail: Page 
2080
    2080
  • Thumbnail: Page 
2081
    2081
  • Thumbnail: Page 
2082
    2082
  • Thumbnail: Page 
2083
    2083
  • Thumbnail: Page 
2084
    2084
  • Thumbnail: Page 
2085
    2085
  • Thumbnail: Page 
2086
    2086
  • Thumbnail: Page 
2087
    2087
  • Thumbnail: Page 
2088
    2088
  • Thumbnail: Page 
2089
    2089
  • Thumbnail: Page 
2090
    2090
  • Thumbnail: Page 
2091
    2091
  • Thumbnail: Page 
2092
    2092
  • Thumbnail: Page 
2093
    2093
  • Thumbnail: Page 
2094
    2094
  • Thumbnail: Page 
2095
    2095
  • Thumbnail: Page 
2096
    2096
  • Thumbnail: Page 
2097
    2097
  • Thumbnail: Page 
2098
    2098
  • Thumbnail: Page 
2099
    2099
  • Thumbnail: Page 
2100
    2100
  • Thumbnail: Page 
2101
    2101
  • Thumbnail: Page 
2102
    2102
  • Thumbnail: Page 
2103
    2103
  • Thumbnail: Page 
2104
    2104
  • Thumbnail: Page 
2105
    2105
  • Thumbnail: Page 
2106
    2106
  • Thumbnail: Page 
2107
    2107
  • Thumbnail: Page 
2108
    2108
  • Thumbnail: Page 
2109
    2109
  • Thumbnail: Page 
2110
    2110
  • Thumbnail: Page 
2111
    2111
  • Thumbnail: Page 
2112
    2112
  • Thumbnail: Page 
2113
    2113
  • Thumbnail: Page 
2114
    2114
  • Thumbnail: Page 
2115
    2115
  • Thumbnail: Page 
2116
    2116
  • Thumbnail: Page 
2117
    2117
  • Thumbnail: Page 
2118
    2118
  • Thumbnail: Page 
2119
    2119
  • Thumbnail: Page 
2120
    2120
  • Thumbnail: Page 
2121
    2121
  • Thumbnail: Page 
2122
    2122
  • Thumbnail: Page 
2123
    2123
  • Thumbnail: Page 
2124
    2124
  • Thumbnail: Page 
2125
    2125