Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Penalty Function Approach to Smoothing Large Sparse Contingency Tables

Jeffrey S. Simonoff
The Annals of Statistics
Vol. 11, No. 1 (Mar., 1983), pp. 208-218
Stable URL: http://www.jstor.org/stable/2240474
Page Count: 11
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Penalty Function Approach to Smoothing Large Sparse Contingency Tables
Preview not available

Abstract

Probabilities in a large sparse contingency table are estimated by maximizing the likelihood modified by a roughness penalty. It is shown that if certain smoothness criteria on the underlying probability vector are met, the estimator proposed is consistent in a one-dimensional table under a sparse asymptotic framework. Suggestions are made for techniques to apply the estimator in practice, and generalization to higher dimensional tables is considered.

Page Thumbnails

  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214
  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218