Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A General Theory for Jackknife Variance Estimation

Jun Shao and C. F. J. Wu
The Annals of Statistics
Vol. 17, No. 3 (Sep., 1989), pp. 1176-1197
Stable URL: http://www.jstor.org/stable/2241717
Page Count: 22
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A General Theory for Jackknife Variance Estimation
Preview not available

Abstract

The delete-1 jackknife is known to give inconsistent variance estimators for nonsmooth estimators such as the sample quantiles. This well-known deficiency can be rectified by using a more general jackknife with d, the number of observations deleted, depending on a smoothness measure of the point estimator. Our general theory explains why jackknife works or fails. It also shows that (i) for "sufficiently smooth" estimators, the jackknife variance estimators with bounded d are consistent and asymptotically unbiased and (ii) for "nonsmooth" estimators, d has to go to infinity at a rate explicitly determined by a smoothness measure to ensure consistency and asymptotic unbiasedness. Improved results are obtained for several classes of estimators. In particular, for the sample p-quantiles, the jackknife variance estimators with d satisfying n1/2/d → 0 and n - d → ∞ are consistent and asymptotically unbiased.

Page Thumbnails

  • Thumbnail: Page 
1176
    1176
  • Thumbnail: Page 
1177
    1177
  • Thumbnail: Page 
1178
    1178
  • Thumbnail: Page 
1179
    1179
  • Thumbnail: Page 
1180
    1180
  • Thumbnail: Page 
1181
    1181
  • Thumbnail: Page 
1182
    1182
  • Thumbnail: Page 
1183
    1183
  • Thumbnail: Page 
1184
    1184
  • Thumbnail: Page 
1185
    1185
  • Thumbnail: Page 
1186
    1186
  • Thumbnail: Page 
1187
    1187
  • Thumbnail: Page 
1188
    1188
  • Thumbnail: Page 
1189
    1189
  • Thumbnail: Page 
1190
    1190
  • Thumbnail: Page 
1191
    1191
  • Thumbnail: Page 
1192
    1192
  • Thumbnail: Page 
1193
    1193
  • Thumbnail: Page 
1194
    1194
  • Thumbnail: Page 
1195
    1195
  • Thumbnail: Page 
1196
    1196
  • Thumbnail: Page 
1197
    1197