Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

More Aspects of Polya Tree Distributions for Statistical Modelling

Michael Lavine
The Annals of Statistics
Vol. 22, No. 3 (Sep., 1994), pp. 1161-1176
Stable URL: http://www.jstor.org/stable/2242220
Page Count: 16
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
More Aspects of Polya Tree Distributions for Statistical Modelling
Preview not available

Abstract

The definition and elementary properties of Polya tree distributions are reviewed. Two theorems are presented showing that Polya trees can be constructed to concentrate arbitrarily closely about any desired pdf, and that Polya tree priors can put positive mass in every relative entropy neighborhood of every positive density with finite entropy, thereby satisfying a consistency condition. Such theorems are false for Dirichlet processes. Models are constructed combining partially specified Polya trees with other information such as monotonicity or unimodality. It is shown how to compute bounds on posterior expectations over the class of all priors with the given specifications. A numerical example is given. A theorem of Diaconis and Freedman about Dirichlet processes is generalized to Polya trees, allowing Polya trees to be the models for errors in regression problems. Finally, empirical Bayes models using Dirichlet processes are generalized to Polya trees. An example from Berry and Christensen is reanalyzed with a Polya tree model.

Page Thumbnails

  • Thumbnail: Page 
1161
    1161
  • Thumbnail: Page 
1162
    1162
  • Thumbnail: Page 
1163
    1163
  • Thumbnail: Page 
1164
    1164
  • Thumbnail: Page 
1165
    1165
  • Thumbnail: Page 
1166
    1166
  • Thumbnail: Page 
1167
    1167
  • Thumbnail: Page 
1168
    1168
  • Thumbnail: Page 
1169
    1169
  • Thumbnail: Page 
1170
    1170
  • Thumbnail: Page 
1171
    1171
  • Thumbnail: Page 
1172
    1172
  • Thumbnail: Page 
1173
    1173
  • Thumbnail: Page 
1174
    1174
  • Thumbnail: Page 
1175
    1175
  • Thumbnail: Page 
1176
    1176