Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Adaptively Local One-Dimensional Subproblems with Application to a Deconvolution Problem

Jianqing Fan
The Annals of Statistics
Vol. 21, No. 2 (Jun., 1993), pp. 600-610
Stable URL: http://www.jstor.org/stable/2242249
Page Count: 11
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Adaptively Local One-Dimensional Subproblems with Application to a Deconvolution Problem
Preview not available

Abstract

In this paper, a method for finding global minimax lower bounds is introduced. The idea is to adjust automatically the direction of a local one-dimensional subproblem at each location to the nearly hardest one, and to use locally the difficulty of the one-dimensional subproblem. This method has the advantages of being easily implemented and understood. The lower bound is then applied to nonparametric deconvolution to obtain the optimal rates of convergence for estimating a whole function. Other applications are also addressed.

Page Thumbnails

  • Thumbnail: Page 
600
    600
  • Thumbnail: Page 
601
    601
  • Thumbnail: Page 
602
    602
  • Thumbnail: Page 
603
    603
  • Thumbnail: Page 
604
    604
  • Thumbnail: Page 
605
    605
  • Thumbnail: Page 
606
    606
  • Thumbnail: Page 
607
    607
  • Thumbnail: Page 
608
    608
  • Thumbnail: Page 
609
    609
  • Thumbnail: Page 
610
    610