Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Markov Chains for Exploring Posterior Distributions

Luke Tierney
The Annals of Statistics
Vol. 22, No. 4 (Dec., 1994), pp. 1701-1728
Stable URL: http://www.jstor.org/stable/2242477
Page Count: 28
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Markov Chains for Exploring Posterior Distributions
Preview not available

Abstract

Several Markov chain methods are available for sampling from a posterior distribution. Two important examples are the Gibbs sampler and the Metropolis algorithm. In addition, several strategies are available for constructing hybrid algorithms. This paper outlines some of the basic methods and strategies and discusses some related theoretical and practical issues. On the theoretical side, results from the theory of general state space Markov chains can be used to obtain convergence rates, laws of large numbers and central limit theorems for estimates obtained from Markov chain methods. These theoretical results can be used to guide the construction of more efficient algorithms. For the practical use of Markov chain methods, standard simulation methodology provides several variance reduction techniques and also give guidance on the choice of sample size and allocation.

Page Thumbnails

  • Thumbnail: Page 
1701
    1701
  • Thumbnail: Page 
1702
    1702
  • Thumbnail: Page 
1703
    1703
  • Thumbnail: Page 
1704
    1704
  • Thumbnail: Page 
1705
    1705
  • Thumbnail: Page 
1706
    1706
  • Thumbnail: Page 
1707
    1707
  • Thumbnail: Page 
1708
    1708
  • Thumbnail: Page 
1709
    1709
  • Thumbnail: Page 
1710
    1710
  • Thumbnail: Page 
1711
    1711
  • Thumbnail: Page 
1712
    1712
  • Thumbnail: Page 
1713
    1713
  • Thumbnail: Page 
1714
    1714
  • Thumbnail: Page 
1715
    1715
  • Thumbnail: Page 
1716
    1716
  • Thumbnail: Page 
1717
    1717
  • Thumbnail: Page 
1718
    1718
  • Thumbnail: Page 
1719
    1719
  • Thumbnail: Page 
1720
    1720
  • Thumbnail: Page 
1721
    1721
  • Thumbnail: Page 
1722
    1722
  • Thumbnail: Page 
1723
    1723
  • Thumbnail: Page 
1724
    1724
  • Thumbnail: Page 
1725
    1725
  • Thumbnail: Page 
1726
    1726
  • Thumbnail: Page 
1727
    1727
  • Thumbnail: Page 
1728
    1728