Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

On the Asymptotics of Constrained M-Estimation

Charles J. Geyer
The Annals of Statistics
Vol. 22, No. 4 (Dec., 1994), pp. 1993-2010
Stable URL: http://www.jstor.org/stable/2242495
Page Count: 18
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
On the Asymptotics of Constrained M-Estimation
Preview not available

Abstract

Limit theorems for an M-estimate constrained to lie in a closed subset of Rd are given under two different sets of regularity conditions. A consistent sequence of global optimizers converges under Chernoff regularity of the parameter set. A $\sqrt n$-consistent sequence of local optimizers converges under Clarke regularity of the parameter set. In either case the asymptotic distribution is a projection of a normal random vector on the tangent cone of the parameter set at the true parameter value. Limit theorems for the optimal value are also obtained, agreeing with Chernoff's result in the case of maximum likelihood with global optimizers.

Page Thumbnails

  • Thumbnail: Page 
1993
    1993
  • Thumbnail: Page 
1994
    1994
  • Thumbnail: Page 
1995
    1995
  • Thumbnail: Page 
1996
    1996
  • Thumbnail: Page 
1997
    1997
  • Thumbnail: Page 
1998
    1998
  • Thumbnail: Page 
1999
    1999
  • Thumbnail: Page 
2000
    2000
  • Thumbnail: Page 
2001
    2001
  • Thumbnail: Page 
2002
    2002
  • Thumbnail: Page 
2003
    2003
  • Thumbnail: Page 
2004
    2004
  • Thumbnail: Page 
2005
    2005
  • Thumbnail: Page 
2006
    2006
  • Thumbnail: Page 
2007
    2007
  • Thumbnail: Page 
2008
    2008
  • Thumbnail: Page 
2009
    2009
  • Thumbnail: Page 
2010
    2010