Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Likelihood and Linkage: From Fisher to the Future

E. A. Thompson
The Annals of Statistics
Vol. 24, No. 2 (Apr., 1996), pp. 449-465
Stable URL: http://www.jstor.org/stable/2242657
Page Count: 17

You can always find the topics here!

Topics: Phenotypic traits, Genetic loci, Chromosomes, Maps, Genomes, Genetics, Alleles, Statistics, Genes, Genotypes
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Likelihood and Linkage: From Fisher to the Future
Preview not available

Abstract

Genetic epidemiology is almost unique among the sciences in that computation of a likelihood function is the accepted approach to statistical inference. In the context of genetic linkage analysis, in which genes are mapped by analysing the dependence in inheritance of different traits, the use of likelihood dates back to the early work of Fisher and Haldane, and has seldom been seriously challenged. After introducing the underlying genetic concepts, this paper reviews the history of the statistics of linkage analysis, from 1913 to 1980, and its dependence on the development of likelihood inference. With the sudden increase in genetic marker data deriving from new DNA technology, the potential for mapping the genes contributing to complex genetic traits is markedly increased, but the difficulties of likelihood analysis are also multiplied. With increasing complexity of models and the desire to make maximum use of available data on individuals not closely related, the likelihood approach to human linkage analysis faces new computational and methodological challenges. New methods are meeting some of these challenges; likelihood and linkage seem as closely interwoven as ever.

Page Thumbnails

  • Thumbnail: Page 
449
    449
  • Thumbnail: Page 
450
    450
  • Thumbnail: Page 
451
    451
  • Thumbnail: Page 
452
    452
  • Thumbnail: Page 
453
    453
  • Thumbnail: Page 
454
    454
  • Thumbnail: Page 
455
    455
  • Thumbnail: Page 
456
    456
  • Thumbnail: Page 
457
    457
  • Thumbnail: Page 
458
    458
  • Thumbnail: Page 
459
    459
  • Thumbnail: Page 
460
    460
  • Thumbnail: Page 
461
    461
  • Thumbnail: Page 
462
    462
  • Thumbnail: Page 
463
    463
  • Thumbnail: Page 
464
    464
  • Thumbnail: Page 
465
    465