Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Locally Parametric Nonparametric Density Estimation

N. L. Hjort and M. C. Jones
The Annals of Statistics
Vol. 24, No. 4 (Aug., 1996), pp. 1619-1647
Stable URL: http://www.jstor.org/stable/2242742
Page Count: 29
  • Get Access
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Locally Parametric Nonparametric Density Estimation
Preview not available

Abstract

This paper develops a nonparametric density estimator with parametric overtones. Suppose f(x, θ) is some family of densities, indexed by a vector of parameters θ. We define a local kernel-smoothed likelihood function which, for each x, can be used to estimate the best local parametric approximant to the true density. This leads to a new density estimator of the form f(x, θ̂(x)), thus inserting the best local parameter estimate for each new value of x. When the bandwidth used is large, this amounts to ordinary full likelihood parametric density estimation, while for moderate and small bandwidths the method is essentially nonparametric, using only local properties of data and the model. Alternative ways more general than via the local likelihood are also described. The methods can be seen as ways of nonparametrically smoothing the parameter within a parametric class. Properties of this new semiparametric estimator are investigated. Our preferred version has approximately the same variance as the ordinary kernel method but potentially a smaller bias. The new method is seen to perform better than the traditional kernel method in a broad nonparametric vicinity of the parametric model employed, while at the same time being capable of not losing much in precision to full likelihood methods when the model is correct. Other versions of the method are approximately equivalent to using particular higher order kernels in a semiparametric framework. The methodology we develop can be seen as the density estimation parallel to local likelihood and local weighted least squares theory in nonparametric regression.

Page Thumbnails

  • Thumbnail: Page 
1619
    1619
  • Thumbnail: Page 
1620
    1620
  • Thumbnail: Page 
1621
    1621
  • Thumbnail: Page 
1622
    1622
  • Thumbnail: Page 
1623
    1623
  • Thumbnail: Page 
1624
    1624
  • Thumbnail: Page 
1625
    1625
  • Thumbnail: Page 
1626
    1626
  • Thumbnail: Page 
1627
    1627
  • Thumbnail: Page 
1628
    1628
  • Thumbnail: Page 
1629
    1629
  • Thumbnail: Page 
1630
    1630
  • Thumbnail: Page 
1631
    1631
  • Thumbnail: Page 
1632
    1632
  • Thumbnail: Page 
1633
    1633
  • Thumbnail: Page 
1634
    1634
  • Thumbnail: Page 
1635
    1635
  • Thumbnail: Page 
1636
    1636
  • Thumbnail: Page 
1637
    1637
  • Thumbnail: Page 
1638
    1638
  • Thumbnail: Page 
1639
    1639
  • Thumbnail: Page 
1640
    1640
  • Thumbnail: Page 
1641
    1641
  • Thumbnail: Page 
1642
    1642
  • Thumbnail: Page 
1643
    1643
  • Thumbnail: Page 
1644
    1644
  • Thumbnail: Page 
1645
    1645
  • Thumbnail: Page 
1646
    1646
  • Thumbnail: Page 
1647
    1647