Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Representation of Partially Ordered Preferences

Teddy Seidenfeld, Mark J. Schervish and Joseph B. Kadane
The Annals of Statistics
Vol. 23, No. 6 (Dec., 1995), pp. 2168-2217
Stable URL: http://www.jstor.org/stable/2242791
Page Count: 50
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Representation of Partially Ordered Preferences
Preview not available

Abstract

This essay considers decision-theoretic foundations for robust Bayesian statistics. We modify the approach of Ramsey, de Finetti, Savage and Anscombe and Aumann in giving axioms for a theory of robust preferences. We establish that preferences which satisfy axioms for robust preferences can be represented by a set of expected utilities. In the presence of two axioms relating to state-independent utility, robust preferences are represented by a set of probability/utility pairs, where the utilities are almost state-independent (in a sense which we make precise). Our goal is to focus on preference alone and to extract whatever probability and/or utility information is contained in the preference relation when that is merely a partial order. This is in contrast with the usual approach to Bayesian robustness that begins with a class of "priors" or "likelihoods," and a single loss function, in order to derive preferences from these probability/utility assumptions.

Page Thumbnails

  • Thumbnail: Page 
2168
    2168
  • Thumbnail: Page 
2169
    2169
  • Thumbnail: Page 
2170
    2170
  • Thumbnail: Page 
2171
    2171
  • Thumbnail: Page 
2172
    2172
  • Thumbnail: Page 
2173
    2173
  • Thumbnail: Page 
2174
    2174
  • Thumbnail: Page 
2175
    2175
  • Thumbnail: Page 
2176
    2176
  • Thumbnail: Page 
2177
    2177
  • Thumbnail: Page 
2178
    2178
  • Thumbnail: Page 
2179
    2179
  • Thumbnail: Page 
2180
    2180
  • Thumbnail: Page 
2181
    2181
  • Thumbnail: Page 
2182
    2182
  • Thumbnail: Page 
2183
    2183
  • Thumbnail: Page 
2184
    2184
  • Thumbnail: Page 
2185
    2185
  • Thumbnail: Page 
2186
    2186
  • Thumbnail: Page 
2187
    2187
  • Thumbnail: Page 
2188
    2188
  • Thumbnail: Page 
2189
    2189
  • Thumbnail: Page 
2190
    2190
  • Thumbnail: Page 
2191
    2191
  • Thumbnail: Page 
2192
    2192
  • Thumbnail: Page 
2193
    2193
  • Thumbnail: Page 
2194
    2194
  • Thumbnail: Page 
2195
    2195
  • Thumbnail: Page 
2196
    2196
  • Thumbnail: Page 
2197
    2197
  • Thumbnail: Page 
2198
    2198
  • Thumbnail: Page 
2199
    2199
  • Thumbnail: Page 
2200
    2200
  • Thumbnail: Page 
2201
    2201
  • Thumbnail: Page 
2202
    2202
  • Thumbnail: Page 
2203
    2203
  • Thumbnail: Page 
2204
    2204
  • Thumbnail: Page 
2205
    2205
  • Thumbnail: Page 
2206
    2206
  • Thumbnail: Page 
2207
    2207
  • Thumbnail: Page 
2208
    2208
  • Thumbnail: Page 
2209
    2209
  • Thumbnail: Page 
2210
    2210
  • Thumbnail: Page 
2211
    2211
  • Thumbnail: Page 
2212
    2212
  • Thumbnail: Page 
2213
    2213
  • Thumbnail: Page 
2214
    2214
  • Thumbnail: Page 
2215
    2215
  • Thumbnail: Page 
2216
    2216
  • Thumbnail: Page 
2217
    2217