Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Block Synchronization, Sliding-Block Coding, Invulnerable Sources and Zero Error Codes for Discrete Noisy Channels

R. M. Gray, D. S. Ornstein and R. L. Dobrushin
The Annals of Probability
Vol. 8, No. 4 (Aug., 1980), pp. 639-674
Stable URL: http://www.jstor.org/stable/2242818
Page Count: 36
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Block Synchronization, Sliding-Block Coding, Invulnerable Sources and Zero Error Codes for Discrete Noisy Channels
Preview not available

Abstract

Results are obtained on synchronizing block codes for discrete stationary totally ergodic $\bar{d}$-continuous noisy channels (which may have infinite memory and anticipation) and used to prove sliding-block joint source and channel coding theorems. The coding theorems are used to demonstrate the existence of invulnerable sources--ergodic sources which can be input directly to the channel without encoding and decoded at the receiver with zero error--at all entropy rates below channel capacity. Combining the invulnerable source theorem with the isomorphism theorem of ergodic theory shows that, if the source is a $B$-process with entropy below capacity, then infinite length codes with zero error exist, proving that the zero-error capacity equals the usual channel capacity.

Page Thumbnails

  • Thumbnail: Page 
639
    639
  • Thumbnail: Page 
640
    640
  • Thumbnail: Page 
641
    641
  • Thumbnail: Page 
642
    642
  • Thumbnail: Page 
643
    643
  • Thumbnail: Page 
644
    644
  • Thumbnail: Page 
645
    645
  • Thumbnail: Page 
646
    646
  • Thumbnail: Page 
647
    647
  • Thumbnail: Page 
648
    648
  • Thumbnail: Page 
649
    649
  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653
  • Thumbnail: Page 
654
    654
  • Thumbnail: Page 
655
    655
  • Thumbnail: Page 
656
    656
  • Thumbnail: Page 
657
    657
  • Thumbnail: Page 
658
    658
  • Thumbnail: Page 
659
    659
  • Thumbnail: Page 
660
    660
  • Thumbnail: Page 
661
    661
  • Thumbnail: Page 
662
    662
  • Thumbnail: Page 
663
    663
  • Thumbnail: Page 
664
    664
  • Thumbnail: Page 
665
    665
  • Thumbnail: Page 
666
    666
  • Thumbnail: Page 
667
    667
  • Thumbnail: Page 
668
    668
  • Thumbnail: Page 
669
    669
  • Thumbnail: Page 
670
    670
  • Thumbnail: Page 
671
    671
  • Thumbnail: Page 
672
    672
  • Thumbnail: Page 
673
    673
  • Thumbnail: Page 
674
    674