Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Distortion-Rate Function for Nonergodic Sources

P. C. Shields, D. L. Neuhoff, L. D. Davisson and F. Ledrappier
The Annals of Probability
Vol. 6, No. 1 (Feb., 1978), pp. 138-143
Stable URL: http://www.jstor.org/stable/2242868
Page Count: 6
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Distortion-Rate Function for Nonergodic Sources
Preview not available

Abstract

The distortion rate function $D(R)$ is defined as an infimum of distortion with respect to a mutual information constraint. The usual coding theorems assert that, for ergodic souces, $D(R)$ is equal to $\delta(R)$, the least distortion attainable by block codes of rate $R$. If a source has ergodic components $\{\theta\}$ with weighting measure $dw(\theta)$, it has been shown by Gray and Davisson that $\delta(R)$ is the integral of the components $\delta_\theta(R)$ with respect to $dw(\theta)$. We show that $D(R)$ is the infimum of the integrals of $D_\theta(R_\theta)$ where the integral of $R_\theta$ is $R$. Our method of proof also gives a formula for the $\bar{d}$-distance in terms of ergodic components and shows that $D(R) = D'(R)$, which is defined as the infimum of distortion subject to an entropy constraint.

Page Thumbnails

  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143