## Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

## If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

# Spreading of Sets in Product Spaces and Hypercontraction of the Markov Operator

Rudolf Ahlswede and Peter Gacs
The Annals of Probability
Vol. 4, No. 6 (Dec., 1976), pp. 925-939
Stable URL: http://www.jstor.org/stable/2242953
Page Count: 15
Preview not available

## Abstract

For a pair of random variables, $(X, Y)$ on the space $\mathscr{X} \times \mathscr{Y}$ and a positive constant, $\lambda$, it is an important problem of information theory to look for subsets $\mathscr{A}$ of $\mathscr{X}$ and $\mathscr{B}$ of $\mathscr{Y}$ such that the conditional probability of $Y$ being in $\mathscr{B}$ supposed $X$ is in $\mathscr{A}$ is larger than $\lambda$. In many typical situations in order to satisfy this condition, $\mathscr{B}$ must be chosen much larger than $\mathscr{A}$. We shall deal with the most frequently investigated case when $X = (X_1,\cdots, X_n), Y = (Y_1,\cdots, Y_n)$ and $(X_i, Y_i)$ are independent, identically distributed pairs of random variables with a finite range. Suppose that the distribution of $(X, Y)$ is positive for all pairs of values $(x, y)$. We show that if $\mathscr{A}$ and $\mathscr{B}$ satisfy the above condition with a constant $\lambda$ and the probability of $\mathscr{B}$ goes to 0, then the probability of $\mathscr{A}$ goes even faster to 0. Generalizations and some exact estimates of the exponents of probabilities are given. Our methods reveal an interesting connection with a so-called hypercontraction phenomenon in theoretical physics.

• 925
• 926
• 927
• 928
• 929
• 930
• 931
• 932
• 933
• 934
• 935
• 936
• 937
• 938
• 939