Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Majorization, Randomness and Dependence for Multivariate Distributions

Harry Joe
The Annals of Probability
Vol. 15, No. 3 (Jul., 1987), pp. 1217-1225
Stable URL: http://www.jstor.org/stable/2244051
Page Count: 9
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Majorization, Randomness and Dependence for Multivariate Distributions
Preview not available

Abstract

The preorder relation of Hardy, Littlewood and Polya (1929), Day (1973) and Chong (1974, 1976) is applied to multivariate probability densities. This preorder, which is called majorization here, can be interpreted as an ordering of randomness. When used to compare multivariate densities with the same marginal densities, it can be interpreted as an ordering of dependence or conditional dependence. Results in Hickey (1983, 1984) and Joe (1985) are generalized. A relative entropy function is proposed as a measure of dependence or conditional dependence for multivariate densities with the same marginals.

Page Thumbnails

  • Thumbnail: Page 
1217
    1217
  • Thumbnail: Page 
1218
    1218
  • Thumbnail: Page 
1219
    1219
  • Thumbnail: Page 
1220
    1220
  • Thumbnail: Page 
1221
    1221
  • Thumbnail: Page 
1222
    1222
  • Thumbnail: Page 
1223
    1223
  • Thumbnail: Page 
1224
    1224
  • Thumbnail: Page 
1225
    1225