If you need an accessible version of this item please contact JSTOR User Support

Strong Stationary Times Via a New Form of Duality

Persi Diaconis and James Allen Fill
The Annals of Probability
Vol. 18, No. 4 (Oct., 1990), pp. 1483-1522
Stable URL: http://www.jstor.org/stable/2244330
Page Count: 40
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Strong Stationary Times Via a New Form of Duality
Preview not available

Abstract

A strong stationary time for a Markov chain (Xn) is a stopping time T for which XT is stationary and independent of T. Such times yield sharp bounds on certain measures of nonstationarity for X at fixed finite times n. We construct an absorbing dual Markov chain with absorption time a strong stationary time for X. We relate our dual to a notion of duality used in the study of interacting particle systems. For birth and death chains, our dual is again birth and death and permits a stochastic interpretation of the eigenvalues of the transition matrix for X. The duality approach unifies and extends the analysis of previous constructions and provides several new examples.

Page Thumbnails

  • Thumbnail: Page 
1483
    1483
  • Thumbnail: Page 
1484
    1484
  • Thumbnail: Page 
1485
    1485
  • Thumbnail: Page 
1486
    1486
  • Thumbnail: Page 
1487
    1487
  • Thumbnail: Page 
1488
    1488
  • Thumbnail: Page 
1489
    1489
  • Thumbnail: Page 
1490
    1490
  • Thumbnail: Page 
1491
    1491
  • Thumbnail: Page 
1492
    1492
  • Thumbnail: Page 
1493
    1493
  • Thumbnail: Page 
1494
    1494
  • Thumbnail: Page 
1495
    1495
  • Thumbnail: Page 
1496
    1496
  • Thumbnail: Page 
1497
    1497
  • Thumbnail: Page 
1498
    1498
  • Thumbnail: Page 
1499
    1499
  • Thumbnail: Page 
1500
    1500
  • Thumbnail: Page 
1501
    1501
  • Thumbnail: Page 
1502
    1502
  • Thumbnail: Page 
1503
    1503
  • Thumbnail: Page 
1504
    1504
  • Thumbnail: Page 
1505
    1505
  • Thumbnail: Page 
1506
    1506
  • Thumbnail: Page 
1507
    1507
  • Thumbnail: Page 
1508
    1508
  • Thumbnail: Page 
1509
    1509
  • Thumbnail: Page 
1510
    1510
  • Thumbnail: Page 
1511
    1511
  • Thumbnail: Page 
1512
    1512
  • Thumbnail: Page 
1513
    1513
  • Thumbnail: Page 
1514
    1514
  • Thumbnail: Page 
1515
    1515
  • Thumbnail: Page 
1516
    1516
  • Thumbnail: Page 
1517
    1517
  • Thumbnail: Page 
1518
    1518
  • Thumbnail: Page 
1519
    1519
  • Thumbnail: Page 
1520
    1520
  • Thumbnail: Page 
1521
    1521
  • Thumbnail: Page 
1522
    1522