Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Variational Approach to Branching Random Walk in Random Environment

J.-B. Baillon, Ph. Clement, A. Greven and F. Den Hollander
The Annals of Probability
Vol. 21, No. 1 (Jan., 1993), pp. 290-317
Stable URL: http://www.jstor.org/stable/2244762
Page Count: 28
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Variational Approach to Branching Random Walk in Random Environment
Preview not available

Abstract

This paper considers an infinite system of particles on the integers Z that: (1) step to the right with a random delay, and (2) split or die along the way according to a random law depending on their position. The exponential growth rate of the particle density is computed in the long time limit in the form of a variational formula that can be solved explicitly. The result reveals two phase transitions associated with localization vs. delocalization and survival vs. extinction. In addition, the system exhibits an intermittency effect. Greven and den Hollander considered the more difficult situation where the particles may step both to the left and right, but the analysis of the phase diagram was less complete.

Page Thumbnails

  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309
  • Thumbnail: Page 
310
    310
  • Thumbnail: Page 
311
    311
  • Thumbnail: Page 
312
    312
  • Thumbnail: Page 
313
    313
  • Thumbnail: Page 
314
    314
  • Thumbnail: Page 
315
    315
  • Thumbnail: Page 
316
    316
  • Thumbnail: Page 
317
    317