If you need an accessible version of this item please contact JSTOR User Support

A Phase Transition for the Score in Matching Random Sequences Allowing Deletions

Richard Arratia and Michael S. Waterman
The Annals of Applied Probability
Vol. 4, No. 1 (Feb., 1994), pp. 200-225
Stable URL: http://www.jstor.org/stable/2245052
Page Count: 26
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
A Phase Transition for the Score in Matching Random Sequences Allowing Deletions
Preview not available

Abstract

We consider a sequence matching problem involving the optimal alignment score for contiguous subsequences, rewarding matches and penalizing for deletions and mismatches. This score is used by biologists comparing pairs of DNA or protein sequences. We prove that for two sequences of length n, as n → ∞, there is a phase transition between linear growth in n, when the penalty parameters are small, and logarithmic growth in n, when the penalties are large. The results are valid for independent sequences with iid or Markov letters. The crucial step in proving this is to derive a large deviation result for matching with deletions. The longest common subsequence problem of Chvatal and Sankoff is a special case of our setup. The proof of the large deviation result exploits the Azuma-Hoeffding lemma. The phase transition is also established for more general scoring schemes allowing general letter-to-letter alignment penalties and block deletion penalties. We give a general method for applying the bounded increments martingale method to Lipschitz functionals of Markov processes. The phase transition holds for matching Markov chains and for nonoverlapping repeats in a single sequence.

Page Thumbnails

  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214
  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222
  • Thumbnail: Page 
223
    223
  • Thumbnail: Page 
224
    224
  • Thumbnail: Page 
225
    225