Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Model Simulating the Genesis of Banded Vegetation Patterns in Niger

J. M. Thiery, J.-M. D'Herbes and C. Valentin
Journal of Ecology
Vol. 83, No. 3 (Jun., 1995), pp. 497-507
DOI: 10.2307/2261602
Stable URL: http://www.jstor.org/stable/2261602
Page Count: 11
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Model Simulating the Genesis of Banded Vegetation Patterns in Niger
Preview not available

Abstract

1 Two-phase mosaics, or striped vegetation patterns (densely vegetated bands alternating regularly with bare areas), have been reported in arid and semiarid zones. They can occur provided (a) total rainfall is not sufficient to maintain a dense cover; and (b) sufficient and uniform sheet flow can compensate, at least partly, for the lack of water. 2 Recent studies demonstrate that vegetation bands follow a successional model, in which bare areas are colonized by a pioneer front. Local studies in South West Niger suggest that transitions could occur between the various patterns observed within the same ecological region, but with varying average rainfall and surface features. 3 Because these transitions could not be followed in the field without long term studies, a simple model has been elaborated to simulate the different structures observed. This model, based on cellular automata, is derived from the `game of life' and depends only on two hypotheses which reflect competition and synergy: the establishment, growth and survival of a given plant will be affected negatively by the influence of plants situated up-slope and positively by lateral and down-slope plants. 4 A matrix with $9 \times 3$ elements is applied to the same initial tree distribution grid, with three values of the $a$ coefficient reflecting up-slope resource competition and two values of $b$ reflecting lateral synergies. 5 The results demonstrate that almost all the structures observed in the field can be generated by this simple model, by varying only the two parameters $a$ and $b$ and the number of iterations. This result is independent of the initial tree density, showing that observed structures could equally well be derived from more or less dense vegetation patterns.

Page Thumbnails

  • Thumbnail: Page 
497
    497
  • Thumbnail: Page 
498
    498
  • Thumbnail: Page 
499
    499
  • Thumbnail: Page 
500
    500
  • Thumbnail: Page 
501
    501
  • Thumbnail: Page 
502
    502
  • Thumbnail: Page 
503
    503
  • Thumbnail: Page 
504
    504
  • Thumbnail: Page 
505
    505
  • Thumbnail: Page 
506
    506
  • Thumbnail: Page 
507
    507