Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Global Climate Change and Natural-Area Protection: Management Responses and Research Directions

P. N. Halpin
Ecological Applications
Vol. 7, No. 3 (Aug., 1997), pp. 828-843
Published by: Wiley
DOI: 10.2307/2269436
Stable URL: http://www.jstor.org/stable/2269436
Page Count: 16
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Global Climate Change and Natural-Area Protection: Management Responses and Research Directions
Preview not available

Abstract

During the past decade, our understanding of the potential risks that climate change poses to ecosystem function and natural-area protection has increased. Simulation studies of expected changes in species ranges and changes in ecosystem dynamics have indicated that rapidly changing climatic conditions could significantly thwart natural-area protection efforts at a global scale. In response to this potential threat, prescriptive policy and management recommendations have begun to emerge. These management responses include general guidelines for selecting new protected habitats, preemptive actions such as the development of connective corridor systems between protected areas, and active habitat management interventions. At present, many suggested natural-area management responses are only vaguely defined and have yet to be fully tested. To be effective, management responses must now be rigorously assessed with focused and practical ecological analysis. In this overview I examine the current state of research on the risks posed to natural-area protection by climate change and the feasibility of suggested management responses. Examples of potential impacts on global nature-reserve systems, the composition of landscape boundaries of natural ecosystems, and latitudinal differences in expected ecosystem response are presented to illustrate the complexity of potential habitat changes. Examples of potential nature-reserve impacts are provided to demonstrate that the spatial variation presented in climate-change scenarios significantly affects the distribution of climatic impacts on areas of biodiversity protection. An assessment of the composition of landscape boundaries of natural vegetation areas is used to demonstrate the urgent need for analysis of ecosystem dynamics in human-dominated landscapes. Changes in potential vegetation zones at different latitudes are presented to identify limitations in the use of generic rules of altitudinal species response applied globally. Ecological researchers can advance our understanding of ecosystem responses to climate change by conducting well-defined sensitivity analyses at site-specific or sub-regional scales; the current lack of fine-scale climate models need not delay such research. Direct extrapolation of observed species distributions in relation to present climate as a means for projecting future responses is inappropriate; such projections must include consideration of physiological tolerances, competition, and dispersal mechanisms. Understanding local disturbance regimes is fundamental to understanding changes in ecosystem properties and stability. How landscape fragmentation interacts with population mobility and dynamics must be defined in order to better characterize ecosystem controls. Finally, management interventions must be critically evaluated with regard to ecological viability and benefits vs. costs.

Page Thumbnails

  • Thumbnail: Page 
828
    828
  • Thumbnail: Page 
829
    829
  • Thumbnail: Page 
830
    830
  • Thumbnail: Page 
831
    831
  • Thumbnail: Page 
832
    832
  • Thumbnail: Page 
833
    833
  • Thumbnail: Page 
834
    834
  • Thumbnail: Page 
835
    835
  • Thumbnail: Page 
836
    836
  • Thumbnail: Page 
837
    837
  • Thumbnail: Page 
838
    838
  • Thumbnail: Page 
839
    839
  • Thumbnail: Page 
840
    840
  • Thumbnail: Page 
841
    841
  • Thumbnail: Page 
842
    842
  • Thumbnail: Page 
843
    843