If you need an accessible version of this item please contact JSTOR User Support

Constructible Models of Subsystems of ZF

Richard Gostanian
The Journal of Symbolic Logic
Vol. 45, No. 2 (Jun., 1980), pp. 237-250
DOI: 10.2307/2273185
Stable URL: http://www.jstor.org/stable/2273185
Page Count: 14
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Constructible Models of Subsystems of ZF
Preview not available

Abstract

One of the main results of Gödel [4] and [5] is that, if M is a transitive set such that $\langle M, \epsilon \rangle$ is a model of ZF (Zermelo-Fraenkel set theory) and α is the least ordinal not in M, then $\langle L_\alpha, \epsilon \rangle$ is also a model of ZF. In this note we shall use the Jensen uniformisation theorem to show that results analogous to the above hold for certain subsystems of ZF. The subsystems we have in mind are those that are formed by restricting the formulas in the separation and replacement axioms to various levels of the Levy hierarchy. This is all done in § 1. In § 2 we proceed to establish the exact order relationships which hold among the ordinals of the minimal models of some of the systems discussed in § 1. Although the proofs of these latter results will not require any use of the uniformisation theorem, we will find it convenient to use some of the more elementary results and techniques from Jensen's fine-structural theory of L. We thus provide a brief review of the pertinent parts of Jensen's works in § 0, where a list of general preliminaries is also furnished. We remark that some of the techniques which we use in the present paper have been used by us previously in [6] to prove various results about β-models of analysis. Since β-models for analysis are analogous to transitive models for set theory, this is not surprising.

Page Thumbnails

  • Thumbnail: Page 
237
    237
  • Thumbnail: Page 
238
    238
  • Thumbnail: Page 
239
    239
  • Thumbnail: Page 
240
    240
  • Thumbnail: Page 
241
    241
  • Thumbnail: Page 
242
    242
  • Thumbnail: Page 
243
    243
  • Thumbnail: Page 
244
    244
  • Thumbnail: Page 
245
    245
  • Thumbnail: Page 
246
    246
  • Thumbnail: Page 
247
    247
  • Thumbnail: Page 
248
    248
  • Thumbnail: Page 
249
    249
  • Thumbnail: Page 
250
    250