If you need an accessible version of this item please contact JSTOR User Support

Recursion Theory and the Lambda-Calculus

Robert E. Byerly
The Journal of Symbolic Logic
Vol. 47, No. 1 (Mar., 1982), pp. 67-83
DOI: 10.2307/2273382
Stable URL: http://www.jstor.org/stable/2273382
Page Count: 17
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Recursion Theory and the Lambda-Calculus
Preview not available

Abstract

A semantics for the lambda-calculus due to Friedman is used to describe a large and natural class of categorical recursion-theoretic notions. It is shown that if e1 and e2 are godel numbers for partial recursive functions in two standard ω-URS's1 which both act like the same closed lambda-term, then there is an isomorphism of the two ω-URS's which carries e1 to e2.

Page Thumbnails

  • Thumbnail: Page 
67
    67
  • Thumbnail: Page 
68
    68
  • Thumbnail: Page 
69
    69
  • Thumbnail: Page 
70
    70
  • Thumbnail: Page 
71
    71
  • Thumbnail: Page 
72
    72
  • Thumbnail: Page 
73
    73
  • Thumbnail: Page 
74
    74
  • Thumbnail: Page 
75
    75
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83