Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

3088 Varieties A Solution to the Ackermann Constant Problem

John K. Slaney
The Journal of Symbolic Logic
Vol. 50, No. 2 (Jun., 1985), pp. 487-501
DOI: 10.2307/2274237
Stable URL: http://www.jstor.org/stable/2274237
Page Count: 15
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
3088 Varieties A Solution to the Ackermann Constant Problem
Preview not available

Abstract

It is shown that there are exactly six normal DeMorgan monoids generated by the identity element alone. The free DeMorgan monoid with no generators but the identity is characterised and shown to have exactly three thousand and eighty-eight elements. This result solves the "Ackerman constant problem" of describing the structure of sentential constants in the logic R.

Page Thumbnails

  • Thumbnail: Page 
487
    487
  • Thumbnail: Page 
488
    488
  • Thumbnail: Page 
489
    489
  • Thumbnail: Page 
490
    490
  • Thumbnail: Page 
491
    491
  • Thumbnail: Page 
492
    492
  • Thumbnail: Page 
493
    493
  • Thumbnail: Page 
494
    494
  • Thumbnail: Page 
495
    495
  • Thumbnail: Page 
496
    496
  • Thumbnail: Page 
497
    497
  • Thumbnail: Page 
498
    498
  • Thumbnail: Page 
499
    499
  • Thumbnail: Page 
500
    500
  • Thumbnail: Page 
501
    501