If you need an accessible version of this item please contact JSTOR User Support

A Construction for Recursive Linear Orderings

C. J. Ash
The Journal of Symbolic Logic
Vol. 56, No. 2 (Jun., 1991), pp. 673-683
DOI: 10.2307/2274709
Stable URL: http://www.jstor.org/stable/2274709
Page Count: 11
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
A Construction for Recursive Linear Orderings
Preview not available

Abstract

We re-express a previous general result in a way which seems easier to remember, using the terminology of infinite games. We show how this can be applied to construct recursive linear orderings, showing, for example, that if there is a ▵02β + 1 linear ordering of type τ, then there is a recursive ordering of type ωβ · τ.

Page Thumbnails

  • Thumbnail: Page 
673
    673
  • Thumbnail: Page 
674
    674
  • Thumbnail: Page 
675
    675
  • Thumbnail: Page 
676
    676
  • Thumbnail: Page 
677
    677
  • Thumbnail: Page 
678
    678
  • Thumbnail: Page 
679
    679
  • Thumbnail: Page 
680
    680
  • Thumbnail: Page 
681
    681
  • Thumbnail: Page 
682
    682
  • Thumbnail: Page 
683
    683