Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Splittings and the Finite Model Property

Marcus Kracht
The Journal of Symbolic Logic
Vol. 58, No. 1 (Mar., 1993), pp. 139-157
DOI: 10.2307/2275330
Stable URL: http://www.jstor.org/stable/2275330
Page Count: 19
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Splittings and the Finite Model Property
Preview not available

Abstract

An old conjecture of modal logics states that every splitting of the major systems K4, S4, G and Grz has the finite model property. In this paper we will prove that all iterated splittings of G have fmp, whereas in the other cases we will give explicit counterexamples. We also introduce a proof technique which will give a positive answer for large classes of splitting frames. The proof works by establishing a rather strong property of these splitting frames namely that they preserve the finite model property in the following sense. Whenever an extension Λ has fmp so does the splitting Λ/f of Λ by f. Although we will also see that this method has its limitations because there are frames lacking this property, it has several desirable side effects. For example, properties such as compactness, decidability and others can be shown to be preserved in a similar way and effective bounds for the size of models can be given. Moreover, all methods and proofs are constructive.

Page Thumbnails

  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157