If you need an accessible version of this item please contact JSTOR User Support

Machine Learning of Higher-Order Programs

Ganesh Baliga, John Case, Sanjay Jain and Mandayam Suraj
The Journal of Symbolic Logic
Vol. 59, No. 2 (Jun., 1994), pp. 486-500
DOI: 10.2307/2275402
Stable URL: http://www.jstor.org/stable/2275402
Page Count: 15
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Machine Learning of Higher-Order Programs
Preview not available

Abstract

A generator program for a computable function (by definition) generates an infinite sequence of programs all but finitely many of which compute that function. Machine learning of generator programs for computable functions is studied. To motivate these studies partially, it is shown that, in some cases, interesting global properties for computable functions can be proved from suitable generator programs which cannot be proved from any ordinary programs for them. The power (for variants of various learning criteria from the literature) of learning generator programs is compared with the power of learning ordinary programs. The learning power in these cases is also compared to that of learning limiting programs, i.e., programs allowed finitely many mind changes about their correct outputs.

Page Thumbnails

  • Thumbnail: Page 
486
    486
  • Thumbnail: Page 
487
    487
  • Thumbnail: Page 
488
    488
  • Thumbnail: Page 
489
    489
  • Thumbnail: Page 
490
    490
  • Thumbnail: Page 
491
    491
  • Thumbnail: Page 
492
    492
  • Thumbnail: Page 
493
    493
  • Thumbnail: Page 
494
    494
  • Thumbnail: Page 
495
    495
  • Thumbnail: Page 
496
    496
  • Thumbnail: Page 
497
    497
  • Thumbnail: Page 
498
    498
  • Thumbnail: Page 
499
    499
  • Thumbnail: Page 
500
    500