Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

What is an Inference Rule?

Ronald Fagin, Joseph Y. Halpern and Moshe Y. Vardi
The Journal of Symbolic Logic
Vol. 57, No. 3 (Sep., 1992), pp. 1018-1045
DOI: 10.2307/2275447
Stable URL: http://www.jstor.org/stable/2275447
Page Count: 28
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
What is an Inference Rule?
Preview not available

Abstract

What is an inference rule? This question does not have a unique answer. One usually finds two distinct standard answers in the literature; validity inference $(\sigma \vdash_\mathrm{v} \varphi$ if for every substitution τ, the validity of τ [σ] entails the validity of τ[φ]), and truth inference $(\sigma \vdash_\mathrm{t} \varphi$ if for every substitution τ, the truth of τ[σ] entails the truth of τ[φ]). In this paper we introduce a general semantic framework that allows us to investigate the notion of inference more carefully. Validity inference and truth inference are in some sense the extremal points in our framework. We investigate the relationship between various types of inference in our general framework, and consider the complexity of deciding if an inference rule is sound, in the context of a number of logics of interest: classical propositional logic, a nonstandard propositional logic, various propositional modal logics, and first-order logic.

Page Thumbnails

  • Thumbnail: Page 
1018
    1018
  • Thumbnail: Page 
1019
    1019
  • Thumbnail: Page 
1020
    1020
  • Thumbnail: Page 
1021
    1021
  • Thumbnail: Page 
1022
    1022
  • Thumbnail: Page 
1023
    1023
  • Thumbnail: Page 
1024
    1024
  • Thumbnail: Page 
1025
    1025
  • Thumbnail: Page 
1026
    1026
  • Thumbnail: Page 
1027
    1027
  • Thumbnail: Page 
1028
    1028
  • Thumbnail: Page 
1029
    1029
  • Thumbnail: Page 
1030
    1030
  • Thumbnail: Page 
1031
    1031
  • Thumbnail: Page 
1032
    1032
  • Thumbnail: Page 
1033
    1033
  • Thumbnail: Page 
1034
    1034
  • Thumbnail: Page 
1035
    1035
  • Thumbnail: Page 
1036
    1036
  • Thumbnail: Page 
1037
    1037
  • Thumbnail: Page 
1038
    1038
  • Thumbnail: Page 
1039
    1039
  • Thumbnail: Page 
1040
    1040
  • Thumbnail: Page 
1041
    1041
  • Thumbnail: Page 
1042
    1042
  • Thumbnail: Page 
1043
    1043
  • Thumbnail: Page 
1044
    1044
  • Thumbnail: Page 
1045
    1045