If you need an accessible version of this item please contact JSTOR User Support

Weak Presentations of Computable Fields

Carl G. Jockusch, Jr and Alexandra Shlapentokh
The Journal of Symbolic Logic
Vol. 60, No. 1 (Mar., 1995), pp. 199-208
DOI: 10.2307/2275517
Stable URL: http://www.jstor.org/stable/2275517
Page Count: 10
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Weak Presentations of Computable Fields
Preview not available

Abstract

It is shown that for any computable field K and any r.e. degree a there is an r.e. set A of degree a and a field F ≅ K with underlying set A such that the field operations of F (including subtraction and division) are extendible to (total) recursive functions. Further, it is shown that if a and b are r.e. degrees with b ≤ a, there is a 1-1 recursive function $f: \mathbb{Q} \rightarrow \omega$ such that f(Q) ∈ a, f(Z) ∈ b, and the images of the field operations of Q under f can be extended to recursive functions.

Page Thumbnails

  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208