Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Models of Intuitionistic TT and N

Daniel Dzierzgowski
The Journal of Symbolic Logic
Vol. 60, No. 2 (Jun., 1995), pp. 640-653
DOI: 10.2307/2275855
Stable URL: http://www.jstor.org/stable/2275855
Page Count: 14
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Models of Intuitionistic TT and N
Preview not available

Abstract

Let us define the intuitionistic part of a classical theory T as the intuitionistic theory whose proper axioms are identical with the proper axioms of T. For example, Heyting arithmetic HA is the intuitionistic part of classical Peano arithmetic PA. It's a well-known fact, proved by Heyting and Myhill, that ZF is identical with its intuitionistic part. In this paper, we mainly prove that TT, Russell's Simple Theory of Types, and NF, Quine's "New Foundations," are not equal to their intuitionistic part. So, an intuitionistic version of TT or NF seems more naturally definable than an intuitionistic version of ZF. In the first section, we present a simple technique to build Kripke models of the intuitionistic part of TT (with short examples showing bad properties of finite sets if they are defined in the usual classical way). In the remaining sections, we show how models of intuitionistic NF2 and NF can be obtained from well-chosen classical ones. In these models, the excluded middle will not be satisfied for some non-stratified sentences.

Page Thumbnails

  • Thumbnail: Page 
640
    640
  • Thumbnail: Page 
641
    641
  • Thumbnail: Page 
642
    642
  • Thumbnail: Page 
643
    643
  • Thumbnail: Page 
644
    644
  • Thumbnail: Page 
645
    645
  • Thumbnail: Page 
646
    646
  • Thumbnail: Page 
647
    647
  • Thumbnail: Page 
648
    648
  • Thumbnail: Page 
649
    649
  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653