Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

On the Exact Variance of Products

Leo A. Goodman
Journal of the American Statistical Association
Vol. 55, No. 292 (Dec., 1960), pp. 708-713
DOI: 10.2307/2281592
Stable URL: http://www.jstor.org/stable/2281592
Page Count: 6
  • Download ($14.00)
  • Cite this Item
On the Exact Variance of Products
Preview not available

Abstract

A simple exact formula for the variance of the product of two random variables, say, x and y, is given as a function of the means and central product-moments of x and y. The usual approximate variance formula for xy is compared with this exact formula; e.g., we note, in the special case where x and y are independent, that the "variance" computed by the approximate formula is less than the exact variance, and that the accuracy of the approximation depends on the sum of the reciprocals of the squared coefficients of variation of x and y. The case where x and y need not be independent is also studied, and exact variance formulas are presented for several different "product estimates." (The usefulness of exact formulas becomes apparent when the variances of these estimates are compared.) When x and y are independent, simple unbiased estimates of these exact variances are suggested; in the more general case, consistent estimates are presented.

Page Thumbnails

  • Thumbnail: Page 
708
    708
  • Thumbnail: Page 
709
    709
  • Thumbnail: Page 
710
    710
  • Thumbnail: Page 
711
    711
  • Thumbnail: Page 
712
    712
  • Thumbnail: Page 
713
    713