Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

A Network Algorithm for Performing Fisher's Exact Test in r × c Contingency Tables

Cyrus R. Mehta and Nitin R. Patel
Journal of the American Statistical Association
Vol. 78, No. 382 (Jun., 1983), pp. 427-434
DOI: 10.2307/2288652
Stable URL: http://www.jstor.org/stable/2288652
Page Count: 8
  • Download ($14.00)
  • Cite this Item
A Network Algorithm for Performing Fisher's Exact Test in r × c Contingency Tables
Preview not available

Abstract

An exact test of significance of the hypothesis that the row and column effects are independent in an r × c contingency table can be executed in principle by generalizing Fisher's exact treatment of the 2 × 2 contingency table. Each table in a conditional reference set of r × c tables with fixed marginal sums is assigned a generalized hypergeometric probability. The significance level is then computed by summing the probabilities of all tables that are no larger (on the probability scale) than the observed table. However, the computational effort required to generate all r × c contingency tables with fixed marginal sums severely limits the use of Fisher's exact test. A novel technique that considerably extends the bounds of computational feasibility of the exact test is proposed here. The problem is transformed into one of identifying all paths through a directed acyclic network that equal or exceed a fixed length. Some interesting new optimization theorems are developed in the process. The numerical results reveal that for sparse contingency tables Fisher's exact test and Pearson's χ2 test frequently lead to contradictory inferences concerning row and column independence.

Page Thumbnails

  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434