If you need an accessible version of this item please contact JSTOR User Support

Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation

Peter Diggle and J. S. Marron
Journal of the American Statistical Association
Vol. 83, No. 403 (Sep., 1988), pp. 793-800
DOI: 10.2307/2289308
Stable URL: http://www.jstor.org/stable/2289308
Page Count: 8
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation
Preview not available

Abstract

Kernel smoothing is an attractive method for the nonparametric estimation of either a probability density function or the intensity function of a nonstationary Poisson process. In each case the amount of smoothing, controlled by the bandwidth, that is, smoothing parameter, is crucial to the performance of the estimator. Bandwidth selection by cross-validation has been widely studied in the context of density estimation. A bandwidth selector in the intensity estimation case has been proposed that minimizes an estimate of the mean squared error under the assumption that the data are generated by a stationary Cox process. This article shows that these two methods each select the same bandwidth, even though they are motivated in much different ways. In addition to providing further justification of each method, this equivalence of smoothing parameter selectors yields new insights for both density and intensity estimation. A benefit for intensity estimation is that this equivalence makes it clear how the Cox process method may be applied to kernels that are nonuniform, or even of higher order. Another benefit is that this duality between problems makes it clear how to apply the well-developed asymptotic methods for understanding density estimation in the intensity setting. A benefit for density estimation is that it motivates an analog of the Cox process method, which provides a useful nonasymptotic means of studying that problem. The specific forms of the estimators and smoothing parameter selectors are introduced in Section 1. The basic equivalence result is stated in Section 2. Sections 3 and 4 describe new insights that follow for intensity and density estimation, respectively. Section 5 discusses modification of these ideas to take boundary effects into consideration and shows how they can be used to motivate new boundary adjustments in intensity estimation.

Page Thumbnails

  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794
  • Thumbnail: Page 
795
    795
  • Thumbnail: Page 
796
    796
  • Thumbnail: Page 
797
    797
  • Thumbnail: Page 
798
    798
  • Thumbnail: Page 
799
    799
  • Thumbnail: Page 
800
    800