If you need an accessible version of this item please contact JSTOR User Support

Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation

M. P. Wand and M. C. Jones
Journal of the American Statistical Association
Vol. 88, No. 422 (Jun., 1993), pp. 520-528
DOI: 10.2307/2290332
Stable URL: http://www.jstor.org/stable/2290332
Page Count: 9
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation
Preview not available

Abstract

The basic kernel density estimator in one dimension has a single smoothing parameter, usually referred to as the bandwidth. For higher dimensions, however, there are several options for smoothing parameterization of the kernel estimator. For the bivariate case, there can be between one and three independent smoothing parameters in the estimator, which leads to a flexibility versus complexity trade-off when using this estimator in practice. In this article the performances of the different possible smoothing parameterizations are compared, using both the asymptotic and exact mean integrated squared error. Our results show that it is important to have independent smoothing parameters for each of the coordinate directions. Although this is enough for many situations, for densities with high amounts of curvature in directions different to those of the coordinate axes, substantial gains can be made by allowing the kernel mass to have arbitrary orientations. The "sphering" approaches to choosing this orientation are shown to be detrimental in general, however.

Page Thumbnails

  • Thumbnail: Page 
520
    520
  • Thumbnail: Page 
521
    521
  • Thumbnail: Page 
522
    522
  • Thumbnail: Page 
523
    523
  • Thumbnail: Page 
524
    524
  • Thumbnail: Page 
525
    525
  • Thumbnail: Page 
526
    526
  • Thumbnail: Page 
527
    527
  • Thumbnail: Page 
528
    528