Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Bandwidth Choice for Average Derivative Estimation

W. Hardle, J. Hart, J. S. Marron and A. B. Tsybakov
Journal of the American Statistical Association
Vol. 87, No. 417 (Mar., 1992), pp. 218-226
DOI: 10.2307/2290472
Stable URL: http://www.jstor.org/stable/2290472
Page Count: 9
  • Download ($14.00)
  • Cite this Item
Bandwidth Choice for Average Derivative Estimation
Preview not available

Abstract

The average derivative is the expected value of the derivative of a regression function. Kernel methods have been proposed as a means of estimating this quantity. The problem of bandwidth selection for these kernel estimators is addressed here. Asymptotic representations are found for the variance and squared bias. These are compared with each other to find an insightful representation for a bandwidth optimizing terms of lower order than n-1. It is interesting that, for dimensions greater than 1, negative kernels have to be used to prevent domination of bias terms in the asymptotic expression of the mean squared error. The extent to which the theoretical conclusions apply in practice is investigated in an economical example related to the so-called "law of demand."

Page Thumbnails

  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222
  • Thumbnail: Page 
223
    223
  • Thumbnail: Page 
224
    224
  • Thumbnail: Page 
225
    225
  • Thumbnail: Page 
226
    226