If you need an accessible version of this item please contact JSTOR User Support

The Stationary Bootstrap

Dimitris N. Politis and Joseph P. Romano
Journal of the American Statistical Association
Vol. 89, No. 428 (Dec., 1994), pp. 1303-1313
DOI: 10.2307/2290993
Stable URL: http://www.jstor.org/stable/2290993
Page Count: 11
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
The Stationary Bootstrap
Preview not available

Abstract

This article introduces a resampling procedure called the stationary bootstrap as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on weakly dependent stationary observations. Previously, a technique based on resampling blocks of consecutive observations was introduced to construct confidence intervals for a parameter of the m-dimensional joint distribution of m consecutive observations, where m is fixed. This procedure has been generalized by constructing a "blocks of blocks" resampling scheme that yields asymptotically valid procedures even for a multivariate parameter of the whole (i.e., infinite-dimensional) joint distribution of the stationary sequence of observations. These methods share the construction of resampling blocks of observations to form a pseudo-time series, so that the statistic of interest may be recalculated based on the resampled data set. But in the context of applying this method to stationary data, it is natural to require the resampled pseudo-time series to be stationary (conditional on the original data) as well. Although the aforementioned procedures lack this property, the stationary procedure developed here is indeed stationary and possesses other desirable properties. The stationary procedure is based on resampling blocks of random length, where the length of each block has a geometric distribution. In this article, fundamental consistency and weak convergence properties of the stationary resampling scheme are developed.

Page Thumbnails

  • Thumbnail: Page 
1303
    1303
  • Thumbnail: Page 
1304
    1304
  • Thumbnail: Page 
1305
    1305
  • Thumbnail: Page 
1306
    1306
  • Thumbnail: Page 
1307
    1307
  • Thumbnail: Page 
1308
    1308
  • Thumbnail: Page 
1309
    1309
  • Thumbnail: Page 
1310
    1310
  • Thumbnail: Page 
1311
    1311
  • Thumbnail: Page 
1312
    1312
  • Thumbnail: Page 
1313
    1313