Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

Some Theory of Statistical Inference for Nonlinear Science

William A. Brock and Ehung G. Baek
The Review of Economic Studies
Vol. 58, No. 4 (Jun., 1991), pp. 697-716
Published by: Oxford University Press
Stable URL: http://www.jstor.org/stable/2297828
Page Count: 20
  • Download ($42.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Some Theory of Statistical Inference for Nonlinear Science
Preview not available

Abstract

This article shows how standard errors can be estimated for a measure of the number of excited degrees of freedom (the correlation dimension), and a measure of the rate of information creation (a proxy for the Kolmogorov entropy), and a measure of instability. These measures are motivated by nonlinear science and chaos theory. The main analytical method is central limit theory of U-statistics for mixing processes. The paper takes a step toward formal hypothesis testing in nonlinear science and chaos theory.

Page Thumbnails

  • Thumbnail: Page 
697
    697
  • Thumbnail: Page 
698
    698
  • Thumbnail: Page 
699
    699
  • Thumbnail: Page 
700
    700
  • Thumbnail: Page 
701
    701
  • Thumbnail: Page 
702
    702
  • Thumbnail: Page 
703
    703
  • Thumbnail: Page 
704
    704
  • Thumbnail: Page 
705
    705
  • Thumbnail: Page 
706
    706
  • Thumbnail: Page 
707
    707
  • Thumbnail: Page 
708
    708
  • Thumbnail: Page 
709
    709
  • Thumbnail: Page 
710
    710
  • Thumbnail: Page 
711
    711
  • Thumbnail: Page 
712
    712
  • Thumbnail: Page 
713
    713
  • Thumbnail: Page 
714
    714
  • Thumbnail: Page 
715
    715
  • Thumbnail: Page 
716
    716