Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

TRAVELING WAVES AND HOMOGENEOUS FRAGMENTATION

J. Berestycki, S. C. Harris and A. E. Kyprianou
The Annals of Applied Probability
Vol. 21, No. 5 (October 2011), pp. 1749-1794
Stable URL: http://www.jstor.org/stable/23033344
Page Count: 46
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
TRAVELING WAVES AND HOMOGENEOUS FRAGMENTATION
Preview not available

Abstract

We formulate the notion of the classical Fisher—Kolmogorov—Petrovskii—Piscounov (FKPP) reaction diffusion equation associated with a homogeneous conservative fragmentation process and study its traveling waves. Specifically, we establish existence, uniqueness and asymptotics. In the spirit of classical works such as McKean [Comm. Pure Appl. Math. 28 (1975) 323–331] and [Comm. Pure Appl. Math. 29 (1976) 553–554], Neveu [In Seminar on Stochastic Processes (1988) 223–242 Birkhäuser] and Chauvin [Ann. Probab. 19 (1991) 1195–1205], our analysis exposes the relation between traveling waves and certain additive and multiplicative martingales via laws of large numbers which have been previously studied in the context of Crump—Mode—Jagers (CMJ) processes by Nerman [Z. Wahrsch. Verw. Gebiete 57 (1981) 365–395] and in the context of fragmentation processes by Bertoin and Martinez [Adv. in Appl Probab. 37 (2005) 553–570] and Harris, Knobloch and Kyprianou [Ann. Inst. H. Poincaré Probab. Statist. 46 (2010) 119–134]. The conclusions and methodology presented here appeal to a number of concepts coming from the theory of branching random walks and branching Brownian motion (cf. Harris [Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 503–517] and Biggins and Kyprianou [Electr. J. Probab. 10 (2005) 609–631]) showing their mathematical robustness even within the context of fragmentation theory.

Page Thumbnails

  • Thumbnail: Page 
1749
    1749
  • Thumbnail: Page 
1750
    1750
  • Thumbnail: Page 
1751
    1751
  • Thumbnail: Page 
1752
    1752
  • Thumbnail: Page 
1753
    1753
  • Thumbnail: Page 
1754
    1754
  • Thumbnail: Page 
1755
    1755
  • Thumbnail: Page 
1756
    1756
  • Thumbnail: Page 
1757
    1757
  • Thumbnail: Page 
1758
    1758
  • Thumbnail: Page 
1759
    1759
  • Thumbnail: Page 
1760
    1760
  • Thumbnail: Page 
1761
    1761
  • Thumbnail: Page 
1762
    1762
  • Thumbnail: Page 
1763
    1763
  • Thumbnail: Page 
1764
    1764
  • Thumbnail: Page 
1765
    1765
  • Thumbnail: Page 
1766
    1766
  • Thumbnail: Page 
1767
    1767
  • Thumbnail: Page 
1768
    1768
  • Thumbnail: Page 
1769
    1769
  • Thumbnail: Page 
1770
    1770
  • Thumbnail: Page 
1771
    1771
  • Thumbnail: Page 
1772
    1772
  • Thumbnail: Page 
1773
    1773
  • Thumbnail: Page 
1774
    1774
  • Thumbnail: Page 
1775
    1775
  • Thumbnail: Page 
1776
    1776
  • Thumbnail: Page 
1777
    1777
  • Thumbnail: Page 
1778
    1778
  • Thumbnail: Page 
1779
    1779
  • Thumbnail: Page 
1780
    1780
  • Thumbnail: Page 
1781
    1781
  • Thumbnail: Page 
1782
    1782
  • Thumbnail: Page 
1783
    1783
  • Thumbnail: Page 
1784
    1784
  • Thumbnail: Page 
1785
    1785
  • Thumbnail: Page 
1786
    1786
  • Thumbnail: Page 
1787
    1787
  • Thumbnail: Page 
1788
    1788
  • Thumbnail: Page 
1789
    1789
  • Thumbnail: Page 
1790
    1790
  • Thumbnail: Page 
1791
    1791
  • Thumbnail: Page 
1792
    1792
  • Thumbnail: Page 
1793
    1793
  • Thumbnail: Page 
1794
    1794