Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation

Martijn van Zanten, Maria A. Koini, Regina Geyer, Yongxiu Liu, Vittoria Brambilla, Dorothea Bartels, Maarten Koornneef, Paul Fransz and Wim J. J. Soppe
Proceedings of the National Academy of Sciences of the United States of America
Vol. 108, No. 50 (December 13, 2011), pp. 20219-20224
Stable URL: http://www.jstor.org/stable/23060102
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available
Preview not available

Abstract

Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become desiccation-tolerant and dormant. Growth is resumed after release of dormancy and the occurrence of favorable environmental conditions. Here we show that embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation. In addition, the chromatin of embryonic cotyledon nuclei from mature seeds is highly condensed. Nuclei regain their size and chromatin condensation level during germination. The reduction in nuclear size is controlled by the seed maturation regulator ABSCISIC ACID-INSENSITIVE 3, and the increase during germination requires two predicted nuclear matrix proteins, LITTLE NUCLEI 1 and LITTLE NUCLEI 2. Our results suggest that the specific properties of nuclei in ripe seeds are an adaptation to desiccation, independent of dormancy. We conclude that the changes in nuclear size and chromatin condensation in seeds are independent, developmentally controlled processes.

Page Thumbnails

  • Thumbnail: Page 
20219
    20219
  • Thumbnail: Page 
20220
    20220
  • Thumbnail: Page 
20221
    20221
  • Thumbnail: Page 
20222
    20222
  • Thumbnail: Page 
20223
    20223
  • Thumbnail: Page 
20224
    20224