Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Activation in the neural network responsible for categorization and recognition reflects parameter changes

Robert M. Nosofsky, Daniel R. Little and Thomas W. James
Proceedings of the National Academy of Sciences of the United States of America
Vol. 109, No. 1 (January 3, 2012), pp. 333-338
Stable URL: http://www.jstor.org/stable/23076278
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available
Preview not available

Abstract

According to various influential formal models of cognition, perceptual categorization and old—new recognition recruit the same memory system. By contrast, the prevailing view in the cognitive neuroscience literature is that separate neural systems mediate perceptual categorization and recognition. A direct form of evidence is that separate brain regions are activated when observers engage in categorization and recognition tasks involving the same types of stimuli. However, even if the same memory-based comparison processes underlie categorization and recognition, one would not expect to see identical patterns of brain activity across the tasks; the reason is that observers would adjust parameter settings (e.g., vary criterion settings) across the tasks to satisfy the different task goals. In this fMRI study, we conducted categorization and recognition tasks in which stimulus conditions were held constant, and in which observers were induced to vary hypothesized parameter settings across conditions. A formal exemplar model was fitted to the data to track the changes in parameters to help interpret the fMRI results. We observed systematic effects of changes in parameters on patterns of brain activity, which were interpretable in terms of differing forms of evidence accumulation that resulted from the changed parameter settings. After controlling for stimulus and parameter-related differences, we found little evidence that categorization and recognition recruit separate memory systems.

Page Thumbnails

  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338