Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Modelling sample selection using Archimedean copulas

Murray D. Smith
The Econometrics Journal
Vol. 6, No. 1 (2003), pp. 99-123
Published by: Wiley on behalf of the Royal Economic Society
Stable URL: http://www.jstor.org/stable/23113651
Page Count: 25
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Modelling sample selection using Archimedean copulas
Preview not available

Abstract

By a theorem due to Sklar, a multivariate distribution can be represented in terms of its underlying margins by binding them together using a copula function. By exploiting this representation, the 'copula approach' to modelling proceeds by specifying distributions for each margin and a copula function. In this paper, a number of families of copula functions are given, with attention focusing on those that fall within the Archimedean class. Members of this class of copulas are shown to be rich in various distributional attributes that are desired when modelling. The paper then proceeds by applying the copula approach to construct models for data that may suffer from selectivity bias. The models examined are the self-selection model, the switching regime model and the double-selection model. It is shown that when models are constructed using copulas from the Archimedean class, the resulting expressions for the log-likelihood and score facilitate maximum likelihood estimation. The literature on selectivity modelling is almost exclusively based on multivariate normal specifications. The copula approach permits selection modelling based on multivariate non-normality. Examples of self-selection models for labour supply and for duration of hospitalization illustrate the application of the copula approach to modelling.

Page Thumbnails

  • Thumbnail: Page 
[99]
    [99]
  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104
  • Thumbnail: Page 
105
    105
  • Thumbnail: Page 
106
    106
  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108
  • Thumbnail: Page 
109
    109
  • Thumbnail: Page 
110
    110
  • Thumbnail: Page 
111
    111
  • Thumbnail: Page 
112
    112
  • Thumbnail: Page 
113
    113
  • Thumbnail: Page 
114
    114
  • Thumbnail: Page 
115
    115
  • Thumbnail: Page 
116
    116
  • Thumbnail: Page 
117
    117
  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123